Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis.

نویسندگان

  • Gislayne Vilas-Boas
  • Vincent Sanchis
  • Didier Lereclus
  • Manoel Victor F Lemos
  • Denis Bourguet
چکیده

Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cereus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species--B. thuringiensis or B. cereus--were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting.

The bacterial strain Bacillus cereus is closely related to Bacillus thuringiensis, although any genetic relationship between the two strains is still in debate. Using rep-PCR genomic fingerprinting, we established the genetic relationships between Brazilian sympatric populations of B. cereus and B. thuringiensis simultaneously collected from two geographically separate sites. We observed the fo...

متن کامل

Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice.

As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer se...

متن کامل

Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus

BACKGROUND Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. RESULTS We present ...

متن کامل

Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence.

Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae...

متن کامل

DNA relatedness among Bacillus thuringiensis serovars.

The genetic relationships of Bacillus cereus and of the Bacillus thuringiensis serovars were assessed from measurements of DNA reassociation. A study of 8 to 10 strains each of 13 of the most commonly encountered serovars revealed that the levels of intragroup DNA relatedness for most serovars ranged from 90 to 100%. In contrast, B. thuringiensis serovars canadensis and kenyae consisted of two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 2002